REVIEW PAPER
O TEORETYCZNYCH KORZENIACH ZARZĄDZANIA ZOBRAZOWANIEM TRZECIEGO ŚRODKA PRZY UŻYCIU DYNAMIKI COVID-19 WE FRANCJI
 
More details
Hide details
1
Materials Design, Montrouge, France Kazan Federal University, Republic of Tatarstan, Russia
 
2
Kazan Federal University, Republic of Tatarstan, Russia
 
3
General Electric Renewable Energy, Boulogne Billancourt, France
 
4
Zeta Innovation Consulting, Paris, France
 
 
Online publication date: 2020-09-28
 
 
Publication date: 2020-09-28
 
 
NSZ 2020;15(3):75-92
 
KEYWORDS
TOPICS
ABSTRACT
Aristotelian logic is based on the principle of non-contradiction. A proposition is either true or not true. To match this principle, a system must be plain, separable and it must meet the principle of the excluded middle. Such systems is said Cartesian. The Cartesian dichotomy stems from an often far too simplistic vision of our relationship to reality because if A is true, no-A must often be potentiated. The system (A, no-A) acquires the status of a duopoly (current & potential) whose monadic and unitary character must be considered. The third term, as an expression of intersession and mediation between both items, becomes then a constitutive element of the representation of the real. The analysis mainly based on category theory and on Grothendieck's bi-fibration of topoi shows that mediating functions are constitutive of duopoly. They only have meaning through an included middle; the "soul" of this middle is then a dynamic in complex plane. Here, the truth assumes the status of limits, while the lie misuses the status of a "neo-state" that, seen, in the context of complex entanglements, becomes a fallacious make up. Taking as reference the interpolation given by the Riemann zeta function in complex self-similar systems, we have termed "zeta management" the ability to manage the non-separable systems involving the included middle. We shall introduce the logic of the included middle which is fundamental for understanding the dynamics of complex systems (social systems, research ecosystems, control of crisis, etc). We will also show that it is the same methods which, transposed on the social field, are the basis of the dynamics of mediation (role of institutions in development mechanisms; role of Research in the acceptance of empirical uncertainty; role of the teaching for improving the citizen consciousness, etc.). Finally, we will preview how clan systems or unduly Cartesian educational trends, lead to restrain creativity and lead civilizations to decline for lacking adaptability.
 
REFERENCES (42)
1.
BOCCARA N., 1968, Les principes de la thermodynamique classique, PUF, Paris.
 
2.
CAPUTO M., 1967, Linear model of dissipation whose Z is almost frequency independent, “The Geophysical Journal of the Royal Astronomical Society”, No. 13.
 
3.
CHOQUET G., 1953, Theory of Capacities, “Ann. Inst. Fourier”, No. 5.
 
4.
COLLECTIF UNIVERSITAIRE, 2020, L’identité Dictionnaire encyclopédique, Edt Jean Gayon Folio Gallimard, Paris.
 
5.
CONNES A., 1990, Geometrie non commutative, Dunod Interédition «coll. U», Paris.
 
6.
CONNES A., 2015, An essay on the Riemann hypothesis, (ArXiv 1509.05576v1, Sept).
 
7.
CONNES A., 2017, La géométrie et le quantique, Cours du collège de France Janvier-Février.
 
8.
CONNES A., ROVELLI C., 1994, Von Neumann Algebra Automorphisms and Time-Thermodynamics Relation in General Covariant Quantum Theories, “Class. Quantum Grav.”, No. 11.
 
9.
EDWARDS H.M., 1974, Riemann Zeta function, Academic Press, London.
 
10.
HINES P., 1999, A categorical theory of self-similarity, “Theoretical and Applied Categories”, No. 6.
 
11.
HUSSERL E., 1928, Vorlesungen zur Phänomenologie des inneren Zeitbewusstseins, Lectures on the Phenomenology of the Consciousness of Internal Time, Albert Ludwig Friburg University Archives.
 
12.
IVIC A., 2003, The Riemann Zeta function. Theory and applications, Dover, New York.
 
13.
JONSCHER A.K., 1996, Universal relaxation law, Chelsea Dielectric Press, London.
 
14.
KOJADINOVIC I., 2006, Contribution à l’interpretation des mesures non additives de Choquet, HDR Laboratoire d’Informatique, Université de Nantes.
 
15.
LE MEHAUTE A., 1990, Les géométries fractales, Hermes, Paris.
 
16.
LE MEHAUTE A., 1991, Fractals geometry and applications, Penton Press, Londre.
 
17.
LE MEHAUTE A., DE GUIBERT A., DELAYE A., FILLIPI M., 1982, Modèle de transfert d’énergie sur interfaces fractales, “C.R.Acad.Sci. Paris”, No. 294(II).
 
18.
LE MEHAUTE A., EL KAABOUCHI A., NIVANEN A., 2010, Riemann Conjecture and Fractional derivative, “Computer and Mathematics with Applications”, No. 59(5).
 
19.
LE MÉHAUTE A., HELIODORE F., 2020, An early history of lithium batteries (1970-1985): an example of zeta management, “J. Econophysics and Modern Economy”, No. 13(2).
 
20.
LE MEHAUTE A., NIVANEN L., NIGMATULLIN R., 1998, Flèche du Temps et Géométrie Fractale, Hermes, Paris.
 
21.
LE MÉHAUTÉ A., NIVANEN L., NIGNATULLIN R., 2005, Space Time with bounded curvature and non integer differential Operators, (in:) A. Le Méhauté et al. (eds.), Fractional Differentiation and its applications, U. Books, Berlin.
 
22.
LE MEHAUTE A., RIOT P., 2016, A Trail between Riemann Hypothesis and the Founts of Currency, “J. Econophysics and Modern Economy”, No. 9(2).
 
23.
LE MEHAUTE A., RIOT P., TAYURSKII D., 2015, From Riemann Hypothesis Approach via the Theory of Category to Modern Monetary Theory, “J. Econophysics and Modern Economy”, No. 8(2).
 
24.
LE MÉHAUTÉ A., TAYURSKII D., MENEZES R., RAYNAL S., 2014, Innovation Management from fractal infinite paths integral point of view, “J. Econophysics and Modern Economy”, No. 7(2).
 
25.
LE MÉHAUTÉ A., TAYURSKII D., RIOT P., RAYNAL S., 2017, Grothendieck Topos, Zeta Complexity, and Arrow of Time: new concepts for a Modern Project Management International, “J. of Econophysics and Modern Economy”, No. 10(2).
 
26.
LEINSTER T., 2001, A general theory of self-similarity, “Advances in Mathematics”, No. 226.
 
27.
LEINSTER T., 2014, Basic category theory, Cambridge Studies in Advanced Mathematics, Cambridge.
 
28.
LUPASCO S., 1951, Le principe d’antagonisme et la logique de l’énergie, Ed. Hermann, Paris.
 
29.
MANDELBROT B., 1983, The fractal geometry of Nature, Freeman, San Francisco.
 
30.
OUSTALOUP A., 2016, Diversity and non-integer differentiation for system dynamics, ESTE Wiley, London.
 
31.
POGLIANI L., BERBERAN-SANTOS M.N., 2000, Constantin Carathéodory and the axiomatic thermodynamics, “Journal of Mathematical Chemistry”, Vol. 28.
 
32.
RASSIAS T.M. (ed.), 1990, Constantin Caratheodory: An International Tribute: Vol. 1, World Scientific Publishing Co., London.
 
33.
RAYNAL S., 1996, Le management par projet, Ed. Organisation, Paris.
 
34.
RIOT P., LE MÉHAUTÉ A., 2017, Autosimilarité, fonction zêta et conjecture de Riemann, “Revue d’Electricité et d’Electronique REE”, No. 17.
 
35.
RIOT P., LE MÉHAUTÉ A., TAYURSKII D., 2020, Categories and Zeta & Möbius Functions: Applications to Universal Fractional Operators, (in:) P. Agarwal, R.P. Agarwal, M. Ruzhansky (eds.), Special Functions and Analysis of Differential Equations, Chapman and Hall/CRC.
 
36.
RIOT P., LE MÉHAUTÉ A., TAYURSKII D., NIVANEN L., RAYNAL S., 2018, Zeta management: categoricaland fractional differential approach, “International J. of Econophysics and Modern Economy”, No. 11(1).
 
37.
ROVELLI C., 2017, Is time arrow perspectival in the philosophy of cosmology, (in:) K. Chamcham, J. Sick, J.D. Barrow, S. Saunders (eds.), Cambridge University Press.
 
38.
ROVELLI C., 2018, L’ordre du temps, Paris Flammarion.
 
39.
SIMONS H., 1997, Models of bounded rationality: Empirically grounded economic reason (Vol. 3), The MIT Press, Cambridge, MA.
 
40.
STEENROOD N., 1968, The topology of fiber bundles, Princeton University Press.
 
41.
TALEB N.N., 2007, Black Swan. The impact of the highly improbable, Random House.
 
42.
VOLTAIRE, 1759, Candide ou l’optimiste, Ed. Princep, Paris.
 
eISSN:2719-860X
ISSN:1896-9380
Journals System - logo
Scroll to top