ORIGINAL PAPER
A proposal to use reinforcement learning to optimize decision-making in the field of counteracting money laundering and terrorist financing (Part 2)
 
More details
Hide details
1
Radca prawny, OIRP Warszawa
 
 
Online publication date: 2023-12-31
 
 
Publication date: 2023-12-31
 
 
NSZ 2023;18(4):49-68
 
KEYWORDS
ABSTRACT
Reinforcement learning focuses not only on teaching a single agent, but also the use of this method is reflected in multi-agent operation. This is an important issue from the point of view that the decision-making process and information management in the AML/CFT system for the obligated institution remains an increasingly complex process. Consequently, if we want to use the reinforcement learning method, we must also introduce a multiplicity of agents both in relation to the environment and in relation to each other. Given this type of solutions, it is possible to use multi-agent reinforcement learning or the concept of a semi-independent policy training method with a shared representation for heterogeneous, multi-agent reinforcement learning. Bearing in mind the fact that the AML/CFT decision-making process only derives solutions from artificial intelligence, the human factor also remains essential in this management system. Given these types of needs, the initial solution can be Reinforcement Learning from Human Feedback, which ensures the human factor in learning.
REFERENCES (21)
1.
ABRAMSON, J., AHUJA, A., CARNEVALE, F., GEORGIEV, P., 2022. Improving Multimodal Interactive Agents with Reinforcement Learning from Human Feedback, https://arxiv.org/pdf/2211.116... (dostęp: 22.11.2023).
 
2.
BARTUŚ, T., 2013. Zastosowanie inteligentnych agentów w administracji publicznej, Wydział Ekonomii Uniwersytet Ekonomiczny w Katowicach, Roczniki Kolegium Analiz Ekonomicznych, nr 29.
 
3.
DHADUK, H., 2023. A Complete Guide to Fine Tuning Large Language Models. Simform – Product Engineering Company, https://www.simform.com/blog/c... (dostęp: 20.11.2023).
 
4.
EASTNETS, 2023. Is open-source AI a good or bad thing for the finance sector?, https://www.eastnets.com/newsr... (dostęp: 24.11.2023).
 
5.
EGLI, A., 2023. ChatGPT, GPT-4, and Other Large Language Models: The Next Revolution for Clinical Microbiology?, Clinical Infectious Diseases, vol. 77, nr 9.
 
6.
FRĄCKIEWICZ, M., 2023. Przeciwstawne uczenie maszynowe, https://ts2.space/pl/przeciwst... (dostęp: 26.11.2023).
 
7.
GUOXINAG, T., JIEYU, S., 2023. Financial transaction fraud detector based on imbalance learning and graph neural network, Applied Soft Computing, vol. 149, Part A.
 
8.
GUPTA, J.K., EGOROV, M., KOCHENDERFEL, M., 2017. Cooperative Multi-Agent Control Using Deep Reinforcement Learning, pkt 4.1, https://ala2017.cs.universityo... (dostęp: 26.11.2023).
 
9.
WIKIPEDIA, 2013. Mapa wektorowa, https://pl.wikipedia.org/wiki/... (dostęp: 26.11.2023).
 
10.
MEHTA, K., MAHAJAN, A., KUMAR, P., 2023. marl-jax: Multi-Agent Reinforcement Leaning Framework, https://arxiv.org/pdf/2303.138... (dostęp: 28.11.2023).
 
11.
MULLER, A.C., GUIDO, S., 2023. Machine learning, Python i data science, Gliwice: Wydawnictwo Helion.
 
12.
OUYANG, L., WU, J., JIANG, X., ALMEIDA, D., WAINWRIGHT, C.L., MISHKIN, P., ZHANG, CH., AGARWAL, S., SLAMA, K., RAY, A., SCHULMAN, J., HILTON, J., KELTON, F., MILLER, L., SIMENS, M., ASKELL, A., WELINDER, P., CHRISTIANO, P., LEIKE, J., LOWE, R., 2023. Training language models to follow instructions with human feedback, https://proceedings.neurips.cc... (dostęp: 28.11.2023).
 
13.
PATRIZO, A., 2023. Reinforcement learning from human feedback (RLHF), https://www.techtarget.com/wha..., (dostęp: 28.11.2023).
 
14.
QIU, W., MA, X., AN, B., OBRAZTSOVA, S., YAN, S.H., XU, Z., 2023, RPM: Generalizable Multi-Agent Policies For Multi-Agent Reinforcement Learning, https://arxiv.org/pdf/2210.096... (dostęp: 28.11.2023).
 
15.
RAPORT EBA, 2023. Machine Learning for IRB Models. Follow-Up Report From The Consultation On The Discussion Paper On Machine Learning for IRB Models, Eba/Rep/2023/28, August 2023, https://www.eba.europa.eu/site... (dostęp: 25.11.2023).
 
16.
STANDEN, M., KIM, J., SZABO, C., 2023. SoK: Adversarial Machine Learning Attacks and Defences in Multi-Agent Reinforcement Learning, https://arxiv.org/abs/2301.042... (dostęp: 25.11.2023).
 
17.
SUPERSARS AND INFORMATION, 2023. SuperSARs and information sharing in the regulated sector, https://www.comsuregroup.com/n... (dostęp: 27.11.2023).
 
18.
TONG, G., SHEN, J., 2023. Financial transaction fraud detector based on imbalance learning and graph neural network, Applied Soft Computing, vol. 149, Part A.
 
19.
WEYNS, D., 2010. Architecture-Based Design of Multi-Agent Systems, Berlin–Heidelberg: Springer-Verlag.
 
20.
ZHANG, K., YANG, Z., BAŞAR, T., 2021. Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms, https://arxiv.org/pdf/1911.106... (dostęp: 22.11.2023).
 
21.
ZHAO, B., JIN, W., CHEN, Z., GUO, Y., 2023. A semi-independent policies training method with shared representation for heterogeneous multi-agents reinforcement learning, https://www.frontiersin.org/jo... (dostęp: 22.11.2023).
 
eISSN:2719-860X
ISSN:1896-9380
Journals System - logo
Scroll to top