ORIGINAL PAPER
How to use Markov models for the purposes of counteracting money laundering and in the fight against terrorism? (Part 2)
 
More details
Hide details
1
Radca prawny, Okręgowa Izba Radców Prawnych, Warszawa, Polska
 
 
Online publication date: 2024-09-30
 
 
Publication date: 2024-09-30
 
 
NSZ 2024;19(3):41-64
 
KEYWORDS
ABSTRACT
Research objectives and hypothesis/research questions:
The assumption is that the solution in question, using the universal HMM method, allows its application in IO, in view of the need to select from the multitude of characterized data – metadata – patterns of conduct defined as a „negative impulse” (directional anomaly).

Research methods:
Reviewing the existing research on HMM issues and the possibilities of implementing this method for the purposes of combating crime, including money laundering and terrorism.

Main results:
Due to the lack of obtaining direct data on terrorist activities, their incompleteness and the need to predict the possibility of events that threaten public or financial security – there is a need to build knowledge about terrorists based on data not directly related to this type of crime (as indirect observational results). This also translates into the creation of training sets for mathematical models of counteracting. As a consequence, conducting research based on a small amount of data and available in larger time intervals may give inadequate results. In addition, the use of a probabilistic approach creates opportunities to design counteracting typified negative behaviors.

Implications for theory and practice:
The possibility of using mathematical models of counteraction in the scope of conducting reconnaissance analysis by obligated institutions and for the purposes of conducting analytical activities as part of the application of criminal analysis in the police and special services.
REFERENCES (24)
1.
BARON, M.V., 2021. Identifying armed group presence using Hidden Markov Models, Arts & Sciences Electronic Theses and Dissertations, https://openscholarship.wustl.... (dostęp: 24.08.2024).
 
2.
BHUSARI, V., PATIL, S., 2011. Application of Hidden Markov Model in Credit Card Fraud Detection, International Journal of Distributed and Parallel Systems, nr 2 (6), s. 203-211.
 
3.
BIGGLO.PL, 2004. https://bigglo.pl/slownik/co-t... (dostęp: 25.08.2024).
 
4.
CAMPBELL, W.M., BARRETT, S., ACEVEDO-AVILES, J., DELANEY, B., WEINSTEIN, C., 2010. Detection and simulation of scenarios with hidden Markov models and event dependency graphs, Acoustics, Speech, and Signal Processing, ICASSP-88, 1988 International Conference on 2010.
 
5.
COFFMAN, T.R., MARCUS, S.E., 2004. Dynamic classification of groups through social network analysis and HMMs, [w:] Aerospace Conference, Proceedings, 2004 IEEE, vol. 5, s. 3197-3205.
 
6.
FABIAN, P., SZEDEL, J., 2002. Teoretyczne podstawy zastosowań ukrytego modelu Markowa do rozpoznawania wzorców, Studia Informatica, vol. 23, nr 4 (51), s. 301-328.
 
7.
HAWKES, A.G., 1971. Spectra of some self-exciting and mutually exciting point processes, Biometrika, nr 58, s. 83-90.
 
8.
HOSSAIN, T., GAO, S., KENNEDY, B., GALSTYAN, A., NATARAJAN, P., 2020. Forecasting violent events in the Middle East and North Africa using the Hidden Markov Model and regularized autoregressive models, Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, vol. 17, nr 3, s. 269-283.
 
9.
KOŚKO, M., 2005. Zastosowanie przełącznikowych modeli Markowa w analizie stóp zwrotu cen akcji, IX Ogólnopolskie Seminarium Naukowe, Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Kopernika w Toruniu, 6–8 września 2005, https://www.dem.umk.pl/DME/200... (dostęp: 24.08.2024).
 
10.
LANOUAR, CH., GOAIED, M., 2019. Tourism, terrorism and political violence in Tunisia: Evidence from Markovswitching models, Tourism Management, nr 70, s. 404-414.
 
11.
LAUB, P.J., TAIMRE, T., POLLETT, P.K., Hawkes Processes, https://www.researchgate.net/p... (dostęp: 24.08.2024).
 
12.
LI, Y., DUAN, D., HU, G., LU, Z., 2009. Discovering Hidden Group in Financial Transaction Network Using Hidden Markov Model and Genetic Algorithm, Sixth International Conference on Fuzzy Systems and Knowledge Discovery, Tianjin, https://ieeexplore.ieee.org/do... (dostęp: 20.08.2024).
 
13.
NIEWĘGŁOWSKI M., 2022. Markowskie wielowymiarowe procesy Hawkesa, https://www.impan.pl/~zakopane... (dostęp: 24.08.2024).
 
14.
NWANGA, M.E., OKAFOR, K.C., ACHUMBA, I.E., CHUKWUDEBE, G.A., 2022. Predictive Forensic Based – Characterization of Hidden Elements in Criminal Networks Using Baum-Welch Optimization Technique, [w:] Illumination of Artificial Intelligence in Cybersecurity and Forensics, Cham: Springer International Publishing, s. 231-254.
 
15.
PATTIPATI, K., WILLETT, P., ALLANACH, J., TU, H., SINGH, S., 2006. Hidden Markov Models and Bayesian Networks for Counter‐Terrorism, [w:] Popp, R.L., Yen, J. (Eds.), Emergent Information Technologies and Enabling Policies for Counter‐Terrorism, Hoboken, NJ: Wiley, s. 27-50.
 
16.
RAGHAVAN, V., 2014. Modeling and inferencing for activity profile of terrorist groups, Bridgewater, NJ: Qualcomm Flarion Technologies, Inc.
 
17.
RAGHAVAN, V., GALSTYAN, A., TARTAKOVSKY, A.G., 2013. Hidden Markov models for the activity profile of terrorist groups, The Annals of Applied Statistics, vol. 7, nr 4, s. 2402-2430.
 
18.
SHIMOTSU, K., 2008. Simple (but effective) tests of long memory versus structural breaks, Department of Economics Queen’s University, https://www.bayes.city.ac.uk/_... (dostęp: 24.08.2024).
 
19.
STANIAK, J., 2016. Inicjalizacja ukrytych modeli Markowa z wykorzystaniem analizy skupień, Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, nr 446, s. 224-236.
 
20.
THEODOSIADOU, O., CHATZAKOU, D., TSIKRIKA, T., VROCHIDIS, S., KOMPATSIARIS, J., 2023. Real-time Threat Assessment based on Hidden Markov Models, Risk Analysis, vol. 43, nr 10.
 
21.
THEODOSIADOU, O., PANTELIDOU, K., BASTAS, N., CHATZAKOU, D., TSIKRIKA, T., VROCHIDIS, S., KOMPATSIARIS, I., 2021. Change Point Detection in Terrorism-Related Online Content Using Deep Learning Derived Indicators, Information, nr 12, s. 1-15.
 
22.
TU, H., ALLANACH, J., SATNAM, S., PATTIPATI KRISHNA, R., WILLETT, P., 2004. The Adaptive Safety Analysis and Monitoring system, https://www.researchgate.net/p... (dostęp: 22.08.2024).
 
23.
WEINSTEIN, C., CAMPBELL, W., DELANEY, B., O’LEARY, G., 2009. Modeling and Detection Techniques for Counter-Terror Social Network Analysis and Intent Recognition, https://dspace.mit.edu/bitstre... (dostęp: 25.08.2024).
 
24.
WIKIPEDIA, 2024. Algorytm Viterbiego, https://pl.wikipedia.org/wiki/... (dostęp: 20.08.2024).
 
eISSN:2719-860X
ISSN:1896-9380
Journals System - logo
Scroll to top